
Chapter 2

1. Construct a 3D orthonormal basis, where the first basis vector is along
(3, 4, 0), the second is along a principal axis, and the last is obtained by
taking their cross product.

{(3/5, 4/5, 0), (0, 0, 1), (4/5, −3/5, 0)}

2. A line segment is defined by two end points, p0 and p1, where p0 = (2, 0)
and p1 = (5, 0). Suppose that the vector assigned to p0 is (−1, 2) and that
assigned to p1 is (2, 5). On the line segment, consider a point at (4, 0).
Compute the vector at the point by linearly interpolating the vectors at
p0 and p1.

(1, 4)

001

Chapter 3

1. Consider the two triangles in the figure. Making sure that the triangle
normals point out of the object, fill in the vertex and index arrays for the
indexed mesh representation.

2. The simplest 3D closed mesh is a tetrahedron. Suppose that it is composed
of four vertices, (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Making sure that
the triangle normals point out of the tetrahedron, draw the vertex and
index arrays for the indexed mesh representation.

002

3. The triangle mesh shown below is composed of eight triangles. In the
non-indexed mesh representation, the vertex array has () elements.
In the indexed representation, the vertex and index arrays have ()
and () elements, respectively. Fill in each blank by a number.

24, 6, 24

4. Consider a sphere, the center of which is located at the origin. Let us
create a polygon mesh for the sphere by defining vertices at every 10
degrees along both latitude and longitude. How many vertices do we
have?

614 vertices in total.

003

6. Let v, e, and f denote the numbers of vertices, edges and faces of a closed
triangle mesh, respectively. In [Note: Vertex-triangle ratio in a triangle
mesh], we have derived f = 2v − 4. Derive a similar relation between v
and e.

Then, the relation between v and e is as follows: e = 3v − 6

5. Given the triangle mesh shown below, fill in the vertex and index arrays
for its indexed mesh representation.

004

Chapter 4

1. Note the difference between a column vector and a row vector. For matrix-
vector multiplication, let us use row vectors.

(a) Write the translation matrix that translates (x, y) by (dx, dy).

 1 0 0
0 1 0
dx dy 1

(b) Write the rotation matrix that rotates (x, y) by θ.

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

(c) Write the scaling matrix with scaling factors sx and sy.

 sx 0 0
0 sy 0
0 0 1

2. The object-space basis of an object is denoted by {u, v, n}. Initially, it
is the same as the world-space basis. Suppose that u = (0, 0,−1) and√

2, 1/
√

n = (1/ 2, 0) after a rotation. Compute the matrix for the inverse
of the rotation.

 0 0 −1
− 1√

2
1√
2

0
1√
2

1√
2

0

3. The following matrix represents a combination of a rotation, R, followed
by a translation, T . Write the matrices for R and T .

−1 0 0 3
0 1 0 4
0 0 −1 −1
0 0 0 1

005

R =

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

T =

1 0 0 3
0 1 0 4
0 0 1 −1
0 0 0 1

4. Describe the general procedure for rotating about an arbitrary axis by θ.
The procedure should include (1) the step for transforming the arbitrary
axis into a principal axis and (2) the cross-product operation.

Hint: Considering an orthonormal basis, {u, v, n}, modify the given vector
so that it can be taken as either u, v, or n.

5. The teapot is to be rotated about (3, 0, 4) by 90◦. The rotation about such
an arbitrary axis can be defined as a combination of three matrices: (1)
the rotation of the arbitrary axis onto the x -axis, (2) the rotation about
the x -axis by 90◦, and (3) the inverse of (1). Compute the three matrices.
[Hint: You may use Ry(θ) for (1).]

006

The rotation for (1) is

Ry(θ) =

 3
5 0 4

5
0 1 0
− 4

5 0 3
5

The rotation for (2) is

Rx(90◦) =

 1 0 0
0 0 −1
0 1 0

The rotation for (3) is

Ry(θ)T =

 3
5 0 − 4

5
0 1 0
4
5 0 3

5

6. The teapot is to be rotated about (3, 4, 0) by 90◦. The rotation about such
an arbitrary axis can be defined as a combination of three matrices: (1)
the rotation of the arbitrary axis onto the x -axis, (2) the rotation about
the x -axis by 90◦, and (3) the inverse of (1). Compute the three matrices.
[Hint: You may use Rz(θ) for (1).]

Rz(θ) =

 3
5 − 4

5 0
4
5

3
5 0

0 0 1

The rotation for (1) is

Rz(θ)
T =

 3
5

4
5 0

− 4
5

3
5 0

0 0 1

The rotation for (2) is

Rx(90◦) =

 1 0 0
0 0 −1
0 1 0

007

The rotation for (3) is

Chapter 5

1. Given two non-standard orthonormal bases in 2D space, {a, b} and {c, d},
compute the 2×2 matrix that converts a vector defined in terms of {a, b}
into that of {c, d}.

(
a · c b · c
a · d b · d

)

2. Given two non-standard orthonormal bases in 3D space, {a, b, c} and
{d, e, f}, compute the 3×3 matrix that converts a vector defined in terms
of {a, b, c} into that of {d, e, f}.

 a · d b · d c · d
a · e b · e c · e
a · f b · f c · f

3. Consider scaling along two orthonormal vectors, a and b, neither of which
is identical to the standard basis vector, e1 or e2. The scaling factors along
a and b are denoted by sa and sb, respectively. The scaling matrix is a
combination of three 2×2 matrices. Write the three matrices.

(
ax bx
ay by

)(
sa 0
0 sb

)(
ax ay
bx by

)

008

4. Consider scaling along three orthonormal vectors, a, b, and c, any of which
is not identical to the standard basis vector, e1, e2, or e3. The scaling
factors along a, b, and c are denoted by sa, sb, and sc, respectively. It
is also observed that a × b = c where × denotes the cross product. The
scaling matrix is a combination of three 3×3 matrices. Write the three
matrices.

 ax bx cx
ay by cy
az bz cz

 sa 0 0
0 sb 0
0 0 sc

 ax ay az
bx by bz
cx cy cz

5. The standard coordinate system is defined as {e1, e2, e3,O}, where e1 =
(1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), and O = (0, 0, 0). Consider an-
other coordinate system named S. Its origin is at (5, 0, 0) and basis is
{(0, 1, 0), (−1, 0, 0), (0, 0, 1)}. Given a point defined in the standard coor-
dinate system, compute the matrix that converts the point into S.

0 1 0 0
−1 0 0 5
0 0 1 0
0 0 0 1

009

6. We are given the following view parameters: EYE = (0, 0,−
√

3), AT =
(0, 0, 0), and UP = (0, 1, 0).

(a) Write the basis and origin of the camera space.

n = (0, 0, −1), u = (−1, 0, 0), v = (0, 1, 0).
The origin is at EYE.

(b) The view transform consists of a translation and a rotation. Write
their matrices.

The translation is
1 0 0 0
0 1 0 0

0 0 1
√

3
0 0 0 1

and the rotation is

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

7. We are given the following view parameters: EYE = (0, 0, 3), AT =
(0, 0,−1), and UP = (−1, 0, 0).

(a) Write the basis and origin of the camera space.

n = (0, 0, 1), u = (0, 1, 0), and v = (−1, 0, 0).
The camera space is {u, v, n, EYE}.

(b) The view transform consists of a translation and a rotation. Write
their matrices.

T =

1 0 0 0
0 1 0 0
0 0 1 −3
0 0 0 1

R =

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

010

9. In the world space, two different sets of view parameters are given, {EYE,
AT, UP1} and {EYE, AT, UP2}, where EYE = (18, 8, 0), AT =
(10, 2, 0), UP1 = (0, 8, 0), and UP2 = (−13, 2, 0). Discuss whether the
resulting camera spaces are identical to each other or not.

Two camera spaces are identical.

10. We have two camera spaces, S1 and S2, and want to transform a point
defined in S1 into that in S2. A solution is to transform from S1 to the
world space and then transform from the world space to S2.

(a) S1 is defined using the following parameters: EYE = (0, 0, 3), AT =
(0, 0, −1), and UP = (−1, 0, 0). Compute the matrix that transforms
a point in S1 to that in the world space.

M1 =

0 −1 0 0
1 0 0 0
0 0 1 3
0 0 0 1

8. We are given the following view parameters: EYE = (0, 0, 3), AT =
(0, 0, −1), and UP = (−1, 0, 0). Compute the matrix that transforms the
camera-space coordinates into the world space. Notice that this is not the
view matrix but its inverse.

TR =

0 −1 0 0
1 0 0 0
0 0 1 3
0 0 0 1

011

11. Suppose that the world space is left-handed. The view parameters are
defined as follows: EYE = (0, 0, 3), AT = (0, 0,−1), and UP = (−1, 0, 0).

(a) Assuming that the camera space is also left-handed, compute its
basis, {u, v, n}.

u= (0, 1, 0), v = (−1, 0, 0), and n = (0, 0, 1).

(b) Compute the view matrix that converts the world-space objects into
the camera space.

Mview =

0 1 0 0
−1 0 0 0
0 0 1 −3
0 0 0 1

(b) S2 is defined using the following parameters: EYE = (0, 0,−3),
AT = (0, 0, 0), and UP = (0, 1, 0). Compute the matrix that trans-
forms a point in the world space to that in S2.

M2 =

−1 0 0 0
0 1 0 0
0 0 −1 −3
0 0 0 1

012

12. Shown below is a cross section of the view frustum. It is orthogonal to
the z -axis. We are given {fovy, fovx, n, f}, where fovx stands for field of
view along x -axis. D denotes the distance from the camera to the center
of the cross section. Define aspect as a function of fovx and fovy.

aspect =
cot fovy2

cot fovx2

13. Section 5.4.3 derives the projection matrix based on the fact that the z -
range of the cuboidal view volume is [−1, 1]. Assume that the z -range of
the view volume is changed to [−1, 0] whereas the x - and y-ranges remain
[−1, 1]. Derive the new projection matrix.

cot fovy

2

aspect 0 0 0

0 cot fovy2 0 0

0 0 − f
f−n − nf

f−n
0 0 −1 0

013

14. In (a), a sphere travels about a fixed camera in a circle. Suppose that
the rotating sphere is rendered through the GPU pipeline and the camera
periodically captures five images while the sphere is inside of the view
frustum. If the captured images were overlapped, we would expect the
result in (b). The distance between the camera and sphere is unchanged
and therefore the sphere’s size would remain the same wherever it is lo-
cated on the circle. However, the overlapped images produced by the GPU
rendering pipeline appear as in (c). As soon as the sphere enters the view
frustum (the leftmost sphere), it looks the largest. If the sphere is on
the −n axis of the camera space (the sphere in the middle), it looks the
smallest. Right before the sphere leaves the view frustum (the rightmost
sphere), it looks the largest. Explain why.

Hint: Even though the Euclidean distances from the camera to the
moving spheres are the same, their z -coordinates are different.

014

Chapter 6

1. Given an OpenGL ES program and its vertex shader shown below, fill in
the boxes. Assume that worldMat includes a non-uniform scaling. The
second argument of glVertexAttribPointer specifies the number of com-
ponents in the attribute and the fifth argument specifies the stride.

1: #version 300 es

2:

3: uniform mat4 worldMat, viewMat, projMat;

4:

5: layout(location = 2) in vec3 position;

6: layout(location = 3) in vec3 normal;

7: layout(location = 7) in vec2 texCoord;

8:

9: out vec3 v normal;

10: out vec2 v texCoord;

11:

12: void main() {
13:

14:

15:

gl Position = projMat * viewMat * worldMat * vec4(position, 1.0);

v normal = normalize(transpose(inverse(mat3(worldMat))) * normal);

v texCoord = texCoord;

16: }

1: struct Vertex

2: {
3:

4:

5:

glm::vec3 pos; // position

glm::vec3 nor; // normal

glm::vec2 tex; // texture coordinates

6: };
7: typedef GLushort Index;

8:

9: glEnableVertexAttribArray(2); // position

10: glVertexAttribPointer(2, 3, GL FLOAT, GL FALSE,

sizeof(Vertex), (const GLvoid*) offsetof(Vertex, pos));

11:

12: glEnableVertexAttribArray(3); // normal

13: glVertexAttribPointer(3, 3, GL FLOAT, GL FALSE,

sizeof(Vertex), (const GLvoid*) offsetof(Vertex, nor));

14:

15: glEnableVertexAttribArray(7); // texture coordinates

16: glVertexAttribPointer(7, 2, GL FLOAT, GL FALSE,

sizeof(Vertex), (const GLvoid*) offsetof(Vertex, tex));

015

2. The triangle mesh shown below is composed of eight triangles.

(a) If we have the indexed representation of the mesh, we will invoke
glDrawElements(mode, count, type, indices). What will mode
be? What will count be?

glDrawElements(GL TRIANGLES, 24, GL UNSIGNED SHORT, 0)

(b) If we have the non-indexed representation of the mesh, we will invoke
glDrawArrays(mode, first, count). What will mode be? What
will count be?

glDrawArrays(GL TRIANGLES, 0, 24).

016

Chapter 7

1. Shown below is an object in NDC of the left-handed clip space.

(a) For back-face culling, we consider only the x - and y-coordinates of
each vertex. Assume that v1 and v2 have the same x -coordinate and
v1 and v3 have the same y-coordinate. Is the triangle’s winding order
CW or CCW? Answer this question by drawing the 2D triangle.

The vertices have the CW winding order.

(b) The winding order is determined by checking the sign of a determi-
nant. Is the determinant positive or negative?

negative.

2. A viewport’s corners are located at (10, 20, 1) and (100, 200, 2). The view-
port transform is defined as a scaling followed by a translation.

(a) Write the scaling matrix.

45 0 0 0
0 90 0 0
0 0 0.5 0
0 0 0 1

017

(b) Write the translation matrix.

1 0 0 55
0 1 0 110
0 0 1 1.5
0 0 0 1

3. Our GL program invokes two functions: glViewport(10, 20, 200, 100)

and glDepthRangef(0, 1).

(a) Write the scaling matrix for the viewport transform.

100 0 0 0
0 50 0 0
0 0 0.5 0
0 0 0 1

(b) Write the translation matrix for the viewport transform.

1 0 0 110
0 1 0 70
0 0 1 0.5
0 0 0 1

4. Shown below is a 3D viewport. Compute the viewport transform matrix.

50 0 0 80
0 35 0 55
0 0 0.5 0.5
0 0 0 1

018

5. Shown below is a screen-space triangle. Each vertex is associated with
{(R,G,B), z}. Compute R and z for the fragment at (5.5, 3.5). Instead of
taking the mechanical steps based on slopes, use the linear interpolation
for the intersection of the left edge of the triangle with the scan line at
y-coordinate 3.5. Along the scan line, also use the linear interpolation.

R is 120, and z is 0.25.

6. Shown below is a screen-space triangle. The vertex attributes are the RGB
color, 2D texture coordinates, and z. Interpolate the attributes for the
fragment at (4.5, 3.5). Instead of taking the mechanical steps based on
slopes, use the linear interpolation for the intersection of the right edge of

{(42, 44, 23), (0.45, 0.35), 0.25}.

019

7. Shown below is the projection matrix. Suppose that n = 1, f = 2,
fovy = π

2 , and the view frustum’s width equals its height. Apply the
projection transform to the camera-space points, (0, 2,−2) and (0, 0,−1).
Then, apply the projection transform to (0, 1,−1.5), which is the midpoint
between (0, 2,−2) and (0, 0,−1). Is the result still the midpoint in NDC?
Discuss why or why not.

cot fovy
2

aspect 0 0 0

0 cot fovy2 0 0

0 0 − f+nf−n − 2nf
f−n

0 0 −1 0

This is not the midpoint.

020

8. Shown below is an example of the projection matrix.

(a) Suppose that a camera-space point at (0, 1,−1.5) is projection-transformed.
Compute the transformed point.

0
2
3
1
3
1

(b) With the result of (a), you may be able to guess the following figure.
Discuss why this non-linearity happens.

Hint: Read [Note: Perspective correction].

021

Chapter 8

1. Consider the scan line at y-coordinate 3.5.

(a) Compute the texture coordinates at the intersection points between

8

the scan line and two edges.

(s, t) = (0, 3) , (58 8 , 3).

(b) Compute the texture coordinates of two fragments at the scan line.

(s, t) = (18 ,
3
8), (38 ,

3
8).

2. Suppose that the texture coordinate s is outside of the range [0, 1]. As-

suming that the texture wrapping mode is repeat, write an equation that

converts s into the range [0, 1]. Use the floor or ceiling function.

s′ = s − bsc

3. Suppose that a pixel is projected into (s′, t′) in the texture space. Using the

floor or ceiling function, write the equations to compute the texel index for

nearest point sampling. The index of a texel is the coordinates of its lower-

left corner. For example, the index of the texel located at (1.5, 3.5) is (1, 3).

s′′ = bs′c
t′′ = bt′c

4. Shown below is a fragment projected into the texture space. It is sur-
rounded by four texels. The color of each texel is denoted by ci. Compute
the fragment color, c, using bilinear interpolation.

022

c12 = (1− p)c1 + pc2
c34 = (1− p)c3 + pc4
c = (1− q)c12 + qc34

5. A pixel is projected onto an 8×8-resolution image texture. On the left
of the figure, the red dot represents the projected point, and the yellow
rectangle is the footprint.

(a) The texture is a gray-scale image. The numbers in the level-0 and
level-1 textures represent the texel intensities. Construct the level-2
and level-3 textures.

(b) Suppose that trilinear interpolation is used for texture filtering and λ
is set to the length of the longest side of the footprint. Which levels
are selected? Compute the filtered result at each level.

Levels 2 and 3 are selected. Level 2 is 5, and level 3 is 5.

023

(c) Suppose that trilinear interpolation is used for texture filtering and
λ is set to the length of the shortest side of the footprint. Which
levels are selected? Compute the filtered result at each level.

6. Suppose that, for the OpenGL ES function glTexParameteri(GLenum

target, GLenum pname, GLint param), target is GL TEXTURE 2D and
pname is GL TEXTURE MIN FILTER.

(a) If we choose GL LINEAR for param, what problem might we have?

 Aliasing artifact.

(b) Suppose that we choose GL LINEAR MIPMAP NEAREST for param, which
implies that we choose the nearest level in the mipmap. How many
“linear interpolations” are performed in total? (Note that this ques-
tion is not asking the count of bilinear interpolations.)

We do the linear interpolation three times.

(c) Suppose that we choose GL NEAREST MIPMAP LINEAR for param. How
many “linear interpolations” are performed in total?

We do the linear interpolation just once.

(d) Suppose that we choose GL LINEAR MIPMAP LINEAR for param. How
many “linear interpolations” are performed in total?

We do the linear interpolation seven times.

024

Levels 0 and 1 are selected. Level 0 is 4, and level 1 is 3.5.

7. Some applications such as medical imaging require 3D texturing. Given
a 3D image with a 2l×2l×2l resolution, describe how to construct the
mipmap. How many levels are in the mipmap? What is the size of the
top-level image in the mipmap?

 levels are created and all the other answers are straight.

8. Shown below are a mipmap, a textured quad, and five cases of pixel pro-
jection, where the gray box represents a pixel’s footprint and the 2×2 grid
represents 4 texels. Make five alphabet-number pairs.

(a, 5), (b, 1), (c, 4), (d, 2), (e, 3)

9. Consider a checkerboard image composed of two gray-scale values, 0 (black)
and 0.8 (light gray) in the range of [0, 1]. The footprint of a projected pixel
is square. Its center is exactly in the middle of 4 texels, and the side length
is 2
√

2.

025

(l + 1)

(a) Suppose that each level in the mipmap is filtered by nearest point
sampling and the filtered results are linearly interpolated. What is the
final textured color? (If there are multiple texels whose distances
to the pixel are the same, we choose the upper or upper-right one for
nearest point sampling.)

0.6.

(b) Now suppose that each level is filtered by bilinear interpolation.
What is the final textured color?

0.25.

026

Chapter 9

1. The Phong model shown below assumes a directional light source.

max(n · l, 0)sd ⊗md + (max(r · v, 0))shss ⊗ms + sa ⊗ma +me

(a) How would you modify it for handling multiple directional light
sources?

Hint: Different lighting terms are handled differently.

(b) How would you modify it for replacing the directional light source by
a point light source? Assume that the light intensity a surface point
receives is inversely proportional to the square of distance that the
light has traveled.

Hint: The light vector needs to be computed for each vertex or fragment.

2. At line 16 of Sample code 9-1, v view is a unit vector, but line 19 of
Sample code 9-2 normalizes it again. Explain why.

Hint: Consider the rasterization stage.

3. At line 24 of Sample code 9-2, why do we need max?

Hint: Read the textbook.

4. For specular reflection, it is necessary to compute the refection vector r
using the surface normal n and the light vector l. Write the equation for
r using the dot product of n and l.

r = 2n(n · l)− l

027

5. Consider the figure shown below. It is for the specular reflection term
of the Phong lighting model: (max(r · v, 0))shss ⊗ms. Illustrated in the
middle column are the cones representing the ranges where we can see
the highlights. Connect the black dots. For example, if you think that
a smaller sh leads to a smaller cone, connect the upper-left box to the
upper-middle box.

028

Chapter 10

1. Consider four triangles competing for a pixel location. They have distinct
depth values at the pixel location. If the triangles are processed in an
arbitrary order, how many times would the z-buffer be updated on average
for the pixel location?

' 2.08.

2. You have three surface points competing for a pixel location. Their
RGBA colors and z -coordinates are given as follows: {(1, 0, 0, 0.5), 0.25},
{(0, 1, 0, 0.5), 0.5}, and {(0, 0, 1, 1), 0.75}. They are processed in the back-
to-front order. Compute the final color of the pixel.

(0.5,0.25,0.25).

3. Consider three triangles in the viewport. They are all perpendicular to

4. Consider five fragments competing for a pixel location. Their RGBA colors
and z-coordinates are given as follows:
f1 = {(1, 0, 0, 0.5), 0.2}
f2 = {(0, 1, 1, 0.5), 0.4}
f3 = {(0, 0, 1, 1), 0.6}
f4 = {(1, 0, 1, 0.5), 0.8}
f5 = {(0, 1, 0, 1), 1.0}

(a) What is the correct order of processing the fragments?

The correct order is either f3 → f5 → f4 → f2 → f1 or f5 → f3 → f4 →
f2 → f1.

(b) Compute the final color of the pixel.

(0.5, 0.25, 0.5).

029

the z-axis. The red triangle is behind the green, which is behind the
blue. Three fragments with RGBA colors, (1, 0, 0, 1), (0, 1, 0, 0.5) and
(0, 0, 1, 0.5), compete for a pixel location and they are processed in the
back-to-front order. Compute the final color of the pixel.

(0.25,0.25,0.5).

5. Fog is often used to enhance the realism of outdoor scenes. The simplest

F−N

implementation is a linear fog, which starts from the near plane and ends
at the far plane of the view frustum. The objects located at the near
plane are clearly visible whereas objects at the far plane are completely
obscured by the fog. Such a linear fog can be described by the following
blending equation:

c = fcf + (1 − f)co

where c is the fogged color, f represents the fog factor which increases with
the distance from the viewer, cf is the fog color, and co is the fragment
color. Define the fog factor f as a function of the near plane’s depth
(denoted as N) and the far plane’s depth (denoted as F).

If the distance of an object surface from the camera is d, f is defined to be
d−N .

6. Consider three polygons shown below. They occlude one another in a
circle.

(a) Assume that the polygons are translucent and the rendering order is
red, green, and then blue. Sketch the rendered result.

(b) What problem do you find? How would you resolve the problem?

Hint: With the triangles untouched, there is no solution.

030

Chapter 11

1. Shown below are teapots at three keyframes and the position graphs for
keyframe animation. Draw the orientation graphs.

2. Let {u, v, n} represent the object-space basis. Suppose that an object is
rotated about the n-axis by θn and then rotated about the u-axis by θu.
Describe the object-space Euler transform, Ru(θu)Rn(θn), as a combina-
tion of world-space rotation matrices. (The rotation matrices about the

world-space x -, y-, and z -axes are denoted as Rx, Ry, and Rz, respec-
tively.)

Ru(θu)Rn(θn) = Rz(θn)Rx(θu)

031

3. Consider rotating (0, 1, 0) about (1, 0, 1) by 90◦.

(a) Write the quaternion that represents “rotation about (1, 0, 1) by 90◦.”
[Hint: The imaginary part of a quaternion contains the sine function
and the real part contains the cosine function.]

q = (1/2, 0, 1/2, 1/2).

(b) In order to rotate (0, 1, 0) using the above quaternion, (0, 1, 0) should
also be represented in a quaternion. Write it.

p = (0, 1, 0, 0)

(c) When q and p denote the quaternions in (a) and (b), respectively,
qpq∗ defines the rotation of (0, 1, 0) about (1, 0, 1) by 90◦. Compute
qp and q∗. [Hint: ij = k.]

qp = (− 1
2 ,

1√
2
, 12 , 0)

q∗ = (− 1
2 , 0,−

1
2 ,

1√
2
)

4. Let q denote the quaternion for “rotation about a unit vector u by θ.”
Prove that −q represents the same rotation.

032

Chapter 12

1. In Fig. 12.3, the screen-space ray starts from (xs, ys, 0) and the camera-
space ray starts from (xc, yc,−n).

(a) Using the inverse of the viewport transform, compute the clip-space
ray’s start point in NDC.

w h(2xs − 1, 2ys − 1, −1).

(b) Using the fact that the answer in (a) is identical to the point in
Equation (12.1), compute xc and yc.

2. Suppose that, for object picking, the user clicks exactly the center of the
viewport.

(a) The view-frustum parameters are given as follows: n = 12, f = 18,

fovy = 120◦, and aspect = 1. Represent the camera-space ray in
a parametric equation of t. [Hint: No transform between the screen
and camera spaces is needed. The camera-space ray can be intuitively
defined.]

(0, 0, −12 − t).

(b) Imagine a camera-space bounding sphere. Its radius is 2 and center
is at (0, −1, −14). Compute the parameter t at the first intersection
between the ray and the bounding sphere, and also compute the 3D
coordinates of the intersection point.

033

jin2g
스탬프

jin2g
그룹

(a) Compute the barycentric coordinates of the red dot at (5.5, 3.5) in
terms of v1, v2, and v3.

 (16 ,
1
3 ,

1
2)

(b) Using the barycentric coordinates, compute R and z at (5.5, 3.5).

0.25

4. The last step in Fig. 12.15 is the inverse of the world transform. Suppose
that the original world matrix is a rotation (denoted as R0) followed by a
translation (denoted as T) and {p1, p2, p3, . . . , pn} represents the finger’s
trajectory.

(a) Let R1 denote the rotation matrix computed using p1 and p2. Define
the inverse world transform used to compute R1.

It is (T R0)
−1

(b) Let R2 denote the rotation matrix computed using p2 and p3. Define
the inverse world transform used to compute R2.

 (T R 0R1)
−1,

3. Shown below is a screen-space triangle, each vertex of which is associated
with {(R,G,B), z}.

034

Chapter 13

1. Shown below is the bone hierarchy augmented with the transforms for the
default pose.

(a) Describe what M2,p does.

It transforms the vertex defined in the bone space of spine into the
bone space of its parent, pelvis.

(b) Describe what M2,d does.

It transforms the vertex defined in the bone space of spine into the
character space.

(c) Fill in the blank for M6,d.

M6,d = M5,dM6,p

035

(d) Shown below is the inverse process. Fill in the boxes.

M−14,p

M−11,d

M−14,d = M−14,pM
−1
3,d

2. Shown on the left is the default pose. Let us take the bone space of the
upper arm as the character space. The bone-space origins of the forearm
and hand are (12,0) and (22,0), respectively, with respect to the character
space. From the default pose, the forearm is rotated by 90◦, and the hand
is rotated by −90◦, to define the animated pose.

(a) In the default pose, compute the to-parent matrices of the forearm
and hand (Mf,p and Mh,p).

Mf,p =

 1 0 12
0 1 0
0 0 1

Mh,p =

 1 0 10
0 1 0
0 0 1

036

(b) Using Mf,p and Mh,p, compute the matrices, Mf,d and Mh,d, which
respectively transform the vertices of the forearm and hand into the
character space.

Mf,d =

 1 0 12
0 1 0
0 0 1

Mh,d =

 1 0 22
0 1 0
0 0 1

(c) Compute M−1f,d and M−1h,d.

M−1f,d =

 1 0 −12
0 1 0
0 0 1

M−1h,d =

 1 0 −22
0 1 0
0 0 1

(d) Compute the local transform matrices of the forearm and hand (Mf,l

and Mh,l).

Mf,l =

 0 −1 0
1 0 0
0 0 1

Mh,l =

 0 1 0
−1 0 0
0 0 1

(e) Compute the matrix, Mf,a, which animates the vertices of the fore-
arm and transforms them back to the character space.

Mf,a =

 0 −1 12
1 0 0
0 0 1

037

(f) Compute the matrix, Mh,a, which animates the vertices of the hand
and transforms them back to the character space.

Mh,a =

 1 0 12
0 1 10
0 0 1

(g) Consider a vertex v whose coordinates in the forearm’s bone space
are (8,0). It is affected by two bones, the forearm and hand, which
have the same blend weights. Using the skinning algorithm, compute
the character-space position of v in the animated pose.

(11, 9).

3. Consider the same arm as in Problem 2. The forearm is rotated by −90◦,
and the hand is rotated by 90◦, to define the animated pose. Answer the
same questions as (a) through (g) of Problem 2.

(a) In the default pose, compute the to-parent matrices of the forearm
and hand (Mf,p and Mh,p).

038038

Mf,p =

 1 0 12
0 1 0
0 0 1

Mh,p =

 1 0 10
0 1 0
0 0 1

(b) Using Mf,p and Mh,p, compute the matrices, Mf,d and Mh,d, which
respectively transform the vertices of the forearm and hand into the
character space.

Mf,d =

 1 0 12
0 1 0
0 0 1

Mh,d =

 1 0 22
0 1 0
0 0 1

(c) Compute M−1f,d and M−1h,d.

M−1f,d =

 1 0 −12
0 1 0
0 0 1

M−1h,d =

 1 0 −22
0 1 0
0 0 1

(d) Compute the local transform matrices of the forearm and hand (Mf,l

and Mh,l).

Mf,l =

 0 1 0
−1 0 0
0 0 1

Mh,l =

 0 −1 0
1 0 0
0 0 1

039

(e) Compute the matrix, Mf,a, which animates the vertices of the fore-
arm and transforms them back to the character space.

Mf,a =

 0 1 12
−1 0 0
0 0 1

(f) Compute the matrix, Mh,a, which animates the vertices of the hand
and transforms them back to the character space.

Mh,a =

 1 0 12
0 1 −10
0 0 1

(g) Consider a vertex v whose coordinates in the forearm’s bone space
are (8,0). It is affected by two bones, the forearm and hand, which
have the same blend weights. Using the skinning algorithm, compute
the character-space position of v in the animated pose.

(11, −9).

4. From the default pose shown on the left, the forearm is rotated by −90◦,
and the hand is rotated by 90◦, to define the animated pose. Suppose that
v is affected by both forearm and hand.

040

(a) What are v’s coordinates in the bone space of the forearm?

vf = (2, 0)

(b) Using two matrices, show the process of computing the coordinates
of “v rotated by the forearm” in the bone space of the upper arm.

fv
′ =

 4
−2
1

(c) What are v’s coordinates in the bone space of the hand?

vh = (−1, 0)

(d) Using four matrices, show the process of computing the coordinates
of “v rotated by the hand” in the bone space of the upper arm.

vh
′′ =

 3
−3
1

(e) The forearm and hand have the blend weights of 80% and 20%, re-
spectively, on v. Compute the coordinates of v in the bone space of
the upper arm.

(3.8, −2.2)

041

5. Shown below is the pseudocode for combining skinning and keyframe an-
imation for a human character.

1: for each bone // default pose

2: compute Md-

3:

4: for each frame

5: for each bone i // animated pose

6: interpolate key data

7: compute Ma

8: combine Ma with Md- to define Mi

9: store Mi in the matrix palette

10: invoke vertex shader for skinning

(a) At line 6, what kinds of key data are interpolated?

If Mi,a = Mi−1,aMi,pMi,l, let Mi,p,l denote the combination of Mi,p

and Mi,l. Its upper-left 3×3 sub-matrix represents a ‘combined’ rota-
tion, and the fourth column represents a ‘combined’ translation. For
a keyframe, the rotation component of Mi,p,l is stored as a quater-
nion, and the translation component is stored as a vector. They form
the key data. For each in-between frame of animation, the skeleton
hierarchy is traversed in a top-down fashion to compute Mi,a for
each bone. The quaternions and translational vectors stored in the
keyframes are independently interpolated. The interpolated quater-
nion is converted into a matrix, and the interpolated translation vec-
tor fills the fourth column of the matrix. This matrix is combined
with Mi−1,a so as to complete Mi,a.

(b) The vertex shader invoked at line 10 will perform texturing and light-
ing in addition to skinning. List all data stored in the vertex array.

The object-space position is always required. For lighting and tex-
turing, normal and texture coordinates are needed. For skinning, the
palette indices and the blend weights are needed.

042

6. The figure shown below depicts how skinning is implemented.

(a) How many bones does the character have?

12

(b) How many bones affect a vertex?

3

(c) Fill in the blank at the upper-right corner.

0.6

(d) In the matrix palette, Mi is a combination of two matrices: one
remains fixed throughout the entire animation whereas the other is
updated for every frame. What are the matrices? What do they do?

043

Mi = Mi,aM
−
i,d

1. Given the default pose, M−1i,d of each bone is com-
puted once and remains fixed. For each frame of animation, the
skeleton hierarchy is traversed in a top-down fashion to compute
Mi,a for each bone. A character-space vertex in the default pose is

transformed to the bone space by M−1i,d . Then, it is animated and
transformed back to the character space by Mi,a:

7. In the figure shown below, dynamic gazing is implemented. Involved in
dynamic gazing is the 3-DOF joint connecting the head and neck. Describe
an analytic solution for dynamic gazing.

Suppose the bone space of the head, the origin of which is located at the
head-neck joint. Also suppose that the head bone is along the x -axis,
and the character is facing in the negative z direction. (The y-axis is
perpendicular to both of them.) Now consider a flying object. Its world-
space position is transformed to the bone space of the head. The vector
connecting the eye and the object is computed and normalized. Let us
call the vector v. Then, as presented in Fig. 11.20-(c), the rotation axis
is obtained using the cross product of -z and v, and the rotation angle is
obtained using the dot product of -z and v. Then, the head is rotated using
the rotation axis and angle. (For realistic animations, the rotation angle
needs to be constrained within a range such that the character cannot
gaze at the object outside the field of view.)

044

Chapter 14

1. Vertex array data.

(a) In order to apply tangent-space normal mapping to a character, what
data does the vertex array store?

The object-space position is always required. For tangent-space nor-
mal mapping, normal, texture coordinates, and tangent are needed.
Bitangent is optional. It can be computed by the vertex shader.

(b) In addition, the character is going to be skin-animated. What data
does the vertex array store?

For skinning, the palette indices and the blend weights need to be
added to the above.

2. Shown below is the vertex shader for tangent-space normal mapping. Fill
in the boxes.

1: #version 300 es

2:

3: uniform mat4 worldMat, viewMat, projMat;

4: uniform vec3 eyePos, lightDir;

5:

6: layout(location = 0) in vec3 position;

7: layout(location = 1) in vec3 normal;

8: layout(location = 2) in vec2 texCoord;

9: layout(location = 3) in vec3 tangent;

10:

11: out vec3 v lightTS, v viewTS;

12: out vec2 v texCoord;

13:

14: void main() {
15: vec3 worldPos = (worldMat * vec4(position, 1.0)).xyz;

16: vec3 Nor = normalize(transpose(inverse(mat3(worldMat))) * normal);

17: vec3 Tan = ;

18: vec3 ;

19: mat3 tbnMat = transpose(mat3(Tan, Bin, Nor)); // row major

20:

21: v lightTS = tbnMat * normalize(lightDir);

22: v viewTS = ;

23:

24: v texCoord = texCoord;

25: gl Position = projMat * viewMat * vec4(worldPos, 1.0);

26: }

See Sample code 14-3.

045

3. Suppose that the per-vertex tangent-space basis, {T,B,N}, is stored in
the vertex array and passed to the vertex shader. Write the matrix that
converts a tangent-space normal vector into the world space.

M =

 Tx Bx Nx
Ty By Ny
Tz Bz Nz

4. In Fig. 14.6, we use the finite difference method to compute the normal at
a height-field point. Describe another method that computes the normal
using the surface normals of the triangles sharing the point.

Suppose that, as shown above, a height-field point is shared by six trian-
gles. We can compute the normals for all triangles, and then assign their
mean to the point. In other triangulation methods, a height-field point
can be shared by different numbers of triangles, but we can use the same
method of averaging the normals.

5. Shown below is the fragment shader for tangent-space normal mapping.
Fill in the boxes.

046

1: #version 300 es

2:

3: precision mediump float;

4:

5: uniform sampler2D colorMap, normalMap;

6: uniform vec3 srcDiff; // Sd

7:

8: in vec3 v lightTS;

9: in vec2 v texCoord;

10:

11: layout(location = 0) out vec4 fragColor;

12:

13: void main() {
14: // normal map access

15: vec3 normal = ;

16:

17: vec3 light = ;

18:

19: // diffuse term

20: vec3 matDiff = ;

21: vec3 diff = max(dot(normal, light), 0.0) * srcDiff * matDiff;

22:

23: fragColor = vec4(diff, 1.0);

24: }

See lines 16, 18, and 21 of Sample code 14-4.

6. Consider a cylinder and its parameterization shown below. Suppose that
the cylinder axis equals the y-axis of the coordinate system. Normal
mapping is to be applied to its surface. Describe how you can compute a
tangent space for each vertex (x, y, z). (Do not use any information from
other vertices but use only (x, y, z) of the vertex.)

As the axis of the cylinder is the y-axis, the vertex normal will be (x, 0, z).
(It is not yet normalized.) It corresponds to N . We need to compute
T and B. We can safely make every vertex have the same B, (0, 1, 0).
(Because the axis of the cylinder is the y-axis, such B is tangent to the
cylindrical surface everywhere.) Then, T is made to be parallel to the
zx-plane because it is perpendicular to B. As T is perpendicular to N , it
can be simply set to (z, 0, −x). Observe that T , B, and N are mutually

047

Chapter 15

1. Shadow map filtering.

(a) In the figure shown on the left, the red and blue dots represent the
points sampled in the first and second passes, respectively. Assume
that nearest point sampling is used for shadow map filtering and
biasing is not adopted. For each of five fragments, f1 through f5,
determine if it will be shadowed or fully lit.

Whereas f1, f2, f3, and f5 are shadowed, f4 is fully lit.

(b) In the figure shown on the right, q is a fragment projected into the
shadow map. Its depth is 0.5. The values attached to the texels
denote the depths stored in the shadow map. What is the fragment’s
visibility returned by the PCF algorithm?

0.88.

048

1: #version 300 es

2:

3: uniform mat4 worldMat;

4: uniform mat4 lightViewMat, lightProjMat;

5:

6: layout(location = 0) in vec3 position;

7:

8: void main() {
9: gl Position = ;

10: }

See Sample code 15-1.

3. A problem that could be encountered in shadow mapping is called Peter
Panning. Suppose that a sphere is placed on a planar surface. In the
rendered image, the shadow generated in the planar surface may appear
to be disconnected from the sphere that casts the shadow to the surface.
The sphere looks as if it were floating above the shadow. When would you
encounter this problem?

A large bias often leads to incorrect shadows. Some areas that should be
shadowed are erroneously taken as lit, and consequently the shadow ap-
pears smaller than desired. If the bias becomes overlay large, the occluder
can be separated from the shadow.

4. Shown below is the second-pass vertex shader for shadow mapping. It
converts the clip-space homogeneous coordinates (x, y, z, w) into (0.5x +
0.5w, 0.5y + 0.5w, 0.5z + 0.5w,w) and stores them into v shadowCoord.
Fill in the boxes.

2. Shown below is the first-pass vertex shader for shadow mapping, where
lightViewMat and lightProjMat respectively represent the view and pro-
jection matrices with respect to the light source. Fill in the box.

049

1: #version 300 es

2:

3: uniform mat4 worldMat, viewMat, projMat;

4: uniform mat4 lightViewMat, lightProjMat;

5: uniform vec3 lightPos;

6:

7: layout(location = 0) in vec3 position;

8: layout(location = 1) in vec3 normal;

9: layout(location = 2) in vec2 texCoord;

10:

11: out vec3 v normal, v light;

12: out vec2 v texCoord;

13: out vec4 v shadowCoord;

14:

15: const mat4 tMat = mat4(

16: 0.5, 0.0, 0.0, 0.0,

17:

18:

19:

20:);

21:

22: void main() {
23: v normal = normalize(transpose(inverse(mat3(worldMat))) * normal);

24: vec3 worldPos = (worldMat * vec4(position, 1.0)).xyz;

25: v light = normalize(lightPos - worldPos);

26: v texCoord = texCoord;

27:

28: // for shadow map access and depth comparison

29: v shadowCoord = ;

30: gl Position = ;

31: }

See Sample code 15-4.

5. Shown below is the second-pass fragment shader for ‘biased’ shadow map-
ping. Fill in the boxes.

050

1: #version 300 es

2:

3: precision mediump float;

4: precision mediump sampler2DShadow;

5:

6: uniform sampler2D colorMap;

7: uniform sampler2DShadow shadowMap;

8: uniform vec3 srcDiff;

9:

10: in vec3 v normal, v light;

11: in vec2 v texCoord;

12: in vec4 v shadowCoord;

13:

14: layout(location = 0) out vec4 fragColor;

15:

16: const float offset = 0.005;

17:

18: void main() {
19: vec3 normal = normalize(v normal);

20: vec3 light = normalize(v light);

21:

22: // diffuse term

23: vec3 matDiff = texture(colorMap, v texCoord).rgb;

24: vec3 diff = max(dot(normal, light), 0.0) * srcDiff * matDiff;

25:

26: vec4 offsetVec = ;

27: float visibility = textureProj(shadowMap,);

28:

29: fragColor = vec4(visibility * diff, 1.0);

30: }

See Sample code 15-6

051

Chapter 16

1. In the specular term of the Phong model, the reflection vector is defined
to be 2n(n · l)− l, where n is the surface normal and l is the light vector.
In ray tracing, the reflection ray’s direction is defined to be I − 2n(n · I),
where I is the primary ray’s direction. What causes this difference?

I is incident on the surface, but l leaves the surface.

2. Consider applying ray tracing to a sphere of radius 2, which is centered
at the origin of the coordinate system.

(a) A ray is fired from (10, 1, 0) with the direction vector (−1, 0, 0). Rep-
resent the ray in a parametric equation of t.

(10 − t, 1, 0).

(b) Using the implicit equation of the sphere, x2 + y2 + z2 − 22 = 0, and
the parametric equation of the ray, compute the intersection point
between the sphere and the ray.

(c) In order to compute the reflection ray, the surface normal, n, at the
intersection is needed. How would you compute n in this specific
example?

For a sphere centered at the origin of the coordinate system, the
surface normal at a point is obtained by taking the point and nor-

malizing it. Therefore, the surface normal is (
√
3
2 ,

1
2 , 0).

(d) The reflection ray’s direction is defined to be I − 2n(n · I), where I
represents the primary ray’s. Compute I − 2n(n · I).

r = I − 2n(n · I) = (1
2 ,
√
3
2 , 0)

052

3. Light mapping is usually combined with image texturing at run time to
determine the diffuse reflection.

(a) The light map can store the diffuse reflection, instead of the irra-
diance, so as to avoid the run-time combination of irradiance and
diffuse reflectance. This would lead to an improved run-time perfor-
mance but has a disadvantage. What is it?

The brick-wall example shown in this chapter would give the most
easy-to-understand explanation why the image texture and the light
map are separated. When rendering a wide brick wall, a small-size
brick-wall image texture is tiled through repeat or mirrored-repeat
modes. On the other hand, the light map usually has a low resolution
because diffuse reflections change slowly across the surface. There-
fore, using two small textures (one is the image texture and the other
is the light map) is more space-efficient than using a larger combined
texture.

(b) Light mapping is often called dark mapping because the pixel lit by
the light map is darker than the unlit texel of the image texture.
Why does this happen? How would you resolve this problem?

It happens because the maximum irradiance value stored in the light
map is 1. Unless the irradiance value is 1, the image texture is
darkened. To increase the brightness, the combined color often needs
to be multiplied by some factor greater than one. If the multiplied
value becomes greater than one, it can be clamped to one.

4. Consider capturing six images for a cube map. Each image is generated
using the view and projection transforms.

(a) Is each image generated using a different view transform? Discuss
why it is or is not.

The view transform is defined by EYE, AT, and UP. Even though
EYE is shared by six faces of the cube map, each face is associated
with its own AT and UP, and therefore each face requires a distinct
view transform.

(b) Is each image generated using a different projection transform? Dis-
cuss why it is or is not.

The environment is captured with fovy set to 90◦ and aspect set
to 1. It is because each face of the cube map covers a 90◦ field of
view both vertically and horizontally. It is also natural to use the
same n and f for the six faces. Therefore the projection transform
is identical for the six faces.

053

5. Shown below is the unfolded cube map of six faces. Suppose that a reflec-
tion ray is computed and its direction is along (0.5, 0.4,−0.2).

(a) Which face of the cube map does the reflection ray hit?

face +x is selected.

(b) What are the 2D coordinates of the intersection point between the
reflection ray and the face?

The point hit by R has the yz -coordinates (0.8, −0.4) at face +x.

(c) Compute the texture coordinates corresponding to the intersection
point.

(0.3, 0.9)

6. Shown below is the process of computing the texture coordinates, (s, t),
for cube mapping, which is done automatically by the GPU. Suppose that
the reflection ray hits face -x at (−1.0, 0.8, 0.4). Write the coordinates of
A and B.

054

A = (0.8, −0.4) and B = (0.9, 0.3).

055

Chapter 17

1. The cubic Bézier curve has the equation, (1− t)3p0 +3t(1− t)2p1 +3t2(1−
t)p2 + t3p3. Write the equation of the quartic (degree-4) Bézier curve
defined by {p0, p1, p2, p3, p4}.

It is (1− t)4p0 + 4t(1− t)3p1 + 6t2(1− t)2p2 + 4t3(1− t)p3 + t4p4.

2. Consider a quintic (degree-5) Bézier curve. How many control points are
needed? For each control point, write the Bernstein polynomial over t in
[0, 1].

We need six control points, {p0, p1, p2, p3, p4, p5}, and the equation is de-
fined as follows:

p(t) = (1− t)5p0 + 5t(1− t)4p1 + 10t2(1− t)3p2 + 10t3(1− t)2p3 + 5t4(1− t)1p4 + t5p5

3. You are given three 2D points {(1, 0), (0, 1), (−1, 0)}.

(a) Assuming that the point at (0, 1) is associated with parameter 0.5,
compute the control points of the quadratic Bézier curve that passes
through all three points.

 (0, 2).

(b) On the Bézier curve, compute the coordinates of the point whose
parameter is 0.75.

(12 ,
3
4)

4. Consider a spline composed of two cubic Bézier curves defined by the con-
trol point sets, {p0, p1, p2, p3} and {q0, q1, q2, q3}, where p3 = q0. If they
have the same tangent vector at their junction, the spline is called contin-
uous. What is the necessary condition that makes the spline continuous?
Describe the condition as an equation of p2, p3, q0, and q1.

p3 − p2 = q1 − q0

056

5. In the figure shown below, the camera is moving along the quadratic Bézier
curve p(t) defined by the control points, p1, p2, and p3, whereas AT is
moving along the linear path q(t) connecting the origin and p4. UP is
fixed to the y-axis of the world space.

(a) Both p(t) and q(t) are defined in parameter t in the range [0, 1].
Compute the points on p(t) and q(t) when t = 0.5.

p(t) = (2, 0, 0). q(t) = (0, 2, 0)

(b) Compute the basis of the camera space when t = 0.5.

(c) Compute the 4×4 translation and rotation matrices defining the view
matrix when t = 0.5.

The translation is defined by EYE:
1 0 0 −2
0 1 0 0
0 0 1 0
0 0 0 1

The rotation is defined by u, v, and n:

0 0 −1 0
1√
2

1√
2

0 0
1√
2
− 1√

2
0 0

0 0 0 1

6. A Bézier patch is defined by the control point matrix shown below. In its

domain, the u- and v -axes run horizontally and vertically, respectively. p00 p01 p02
p10 p11 p12
p20 p21 p22

 =

 (0, 0, 6) (0, 3, 3) (0, 6, 6)
(3, 0, 0) (3, 3, 0) (3, 6, 0)
(6, 0, 0) (6, 3, 0) (6, 6, 0)

n
u
v

057

(a) Compute the 3D point when (u, v) = (1, 0).

(0, 6, 6).

(b) Using the method of “repeated bilinear interpolations,” compute the
3D point when (u, v) = (0.5, 0.5).

(3, 3, 9/8).

7. Consider a Bézier patch, whose degrees in terms of u and v are three and
two, respectively. The control point matrix is given as follows:

p00 p01 p02
p10 p11 p12
p20 p21 p22
p30 p31 p32

 =

(0, 0, 4) (0, 3, 4) (0, 6, 4)
(3, 0, 0) (3, 3, 0) (3, 6, 0)
(6, 0, 0) (6, 3, 0) (6, 6, 0)
(5, 0, 4) (5, 3, 4) (5, 6, 4)

(a) Compute the surface point when (u, v) = (0, 1).

(0, 6, 4).

(b) Compute the surface point when (u, v) = (0.5, 0.5).

(4, 3, 1).

8. Given the following quadratic Bézier triangle, compute the surface point
when (u, v) = (1/3, 1/3).

(2, 2, 2)

058

9. Shown below is the triangular net of a quartic (degree-4) Bézier triangle.
When v = 1, the Bézier triangle is reduced to k. When w = 1, it is o.
Define the equation of the curve when u = 0.

It is either (1− v)4o+ 4v(1− v)3n+ 6v2(1− v)2m+ 4v3(1− v)l+ v4k or
(1− w)4k + 4w(1− w)3l + 6w2(1− w)2m+ 4w3(1− w)n+ w4o.

059

